Step of Proof: all_quot_elim
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
all
quot
elim
:
T
:Type,
E
:(
T
T
).
EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
(
F
:((
x
,
y
:
T
//(
E
(
x
,
y
)))
).
(
w
:(
x
,
y
:
T
//(
E
(
x
,
y
))). SqStable(
F
(
w
)))
((
z
:(
x
,
y
:
T
//(
E
(
x
,
y
))).
F
(
z
))
(
z
:
T
.
F
(
z
))))
latex
by ((GenUnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
E
:
T
T
C1:
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
C1:
4.
F
: (
x
,
y
:
T
//(
E
(
x
,
y
)))
C1:
5.
w
:(
x
,
y
:
T
//(
E
(
x
,
y
))). SqStable(
F
(
w
))
C1:
6.
z
:(
x
,
y
:
T
//(
E
(
x
,
y
))).
F
(
z
)
C1:
7.
z
:
T
C1:
F
(
z
)
C
2
:
C2:
1.
T
: Type
C2:
2.
E
:
T
T
C2:
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
C2:
4.
F
: (
x
,
y
:
T
//(
E
(
x
,
y
)))
C2:
5.
w
:(
x
,
y
:
T
//(
E
(
x
,
y
))). SqStable(
F
(
w
))
C2:
6.
z
:
T
.
F
(
z
)
C2:
7.
z
:
x
,
y
:
T
//(
E
(
x
,
y
))
C2:
F
(
z
)
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
P
Q
,
P
&
Q
,
P
Q
,
P
Q
,
,
x
:
A
.
B
(
x
)
,
x
(
s1
,
s2
)
,
S
T
Lemmas
equiv
rel
wf
,
sq
stable
wf
,
quotient
qinc
,
quotient
wf
origin